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A nonlinear, time-dependent, hydromagnetic model is developed. The model is based 
on the eight partial differential equations of resistive magnetohydrodynamics (MHD). 
The equations are expressed as a set of conservation laws which are written in general, 
orthogonal, curvilinear coordinates in two space dimensions. No assumption about the 
ordering of terms is made. The resulting equations are then solved by the method of finite 
differences on an Eulerian mesh. We develop spatial finite-difference techniques which 
guarantee the simultaneous conservation of the desired physical quantities throughout 
the course of the calculation. Conservative boundary conditions on thermodynamic 
quantities at a conducting boundary are derived, and special algorithms are developed 
for advancing the solution at a singular boundary. For the temporal differencing, we use the 
Alternating Direction Implicit (ADI) method. We apply our model to the difficult case of 
resistive instabilities. We present results relevant to the nonlinear evolution of these modes 
in three distinct coordinate systems. One of these cases depends on finite plasma pressure, 
and can be studied only with a general model such as that presented here. 

1. INTRODUCTION 

With the advances in speed and memory size of modern computers, it has become 
feasible to study plasma instabilities by numerical techniques. For the case of ideal 
(infinitely conducting) magnetohydrodynamics (MHD), computations of the linear 
behavior of these modes have followed two paths: calculations based on the energy 
principle [l, 21, which have yielded significant information about the spectrum of 
ideal MHD activity in plasmas; and calculations based on the solution of an initial- 
value problem in which the linearized fluid equations are advanced in time until an 
exponentially growing solution appears [3-61. 

In order to study the long-time, large-amplitude behavior of plasma instabilities, 
and to simulate experimental devices in controlled fusion research, the nonlinear fluid 
equations must be solved. In general, such a calculation requires the simultaneous 
advancement in time of eight nonlinear partial differential equations in several spatial 
dimensions. Early codes of this type are reviewed by Roberts and Potter [7]. 
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Codes which model the behavior of an infinitely conducting plasma in several 
spatial dimensions have recently appeared. Brackbill [S] has used a moving com- 
putational grid in extensive simulations of the Scyllac experiment. Bateman et al. [9] 
have used explicit methods on an Eulerian mesh to study fixed-boundary MHD 
instabilities, and recently Jardin et al. [lo, 1 I] have introduced dynamical grid methods 
in their studies of tokamak instabilities. Strauss [ 12, 131 has used modified equations 
to study the nonlinear evolution of tokamak plasmas, and Pritchett er al. [45] have 
used an explicit nonlinear code to study the evolution of ideal interchange instabilities. 

More realistic modeling of plasma behavior requires that transport coefficients, such 
as resistivity, be included. Explicit codes in two [14] and three [15-171 spatial dimen- 
sions are now in existence. However, the inclusion of resistivity changes the equations 
from hyperbolic to parabolic, with the result that explicit methods may not be ade- 
quate for reasons of economics (computer time) and numerical stability. Lindemuth 
.and Killeen [18] were the first to use implicit finite-difference methods for nonlinear 
multidimensional MHD problems. Later versions of this code have successfully 
simulated z-pinch implosions [I91 by excluding two components of the magnetic 
field and one component of the velocity from the model. Lui and Chu [20,21] have 
used implicit methods to simulate the implosion phase of cylindrical and belt pinch 
,experiments. Finan [22] is using implicit methods to solve the full set of resistive MHD 
equations in three space dimensions. 

One of the effects of nonvanishing resistivity is the occurrence of unstable modes 
which have no counterpart in ideal MHD theory [23]. These resistive instabilities grow 
on time scales which can be long relative to the fastest time scales of the system, 
leading to severe computational problems. Recently, the evolution and interaction of 
these modes in tokamaks have been successfully and extensively studied [24-281 by 
.assuming an ordering that eliminates the fastest time scales from the problem, and 
results in a reduced set of equations for the scalar flux and stream functions [29]. This 
allows the calculation to proceed rapidly for the large values of magnetic Reynolds 
number typical of tokamak discharges. However, certain effects, such as those due to 
finite plasma pressure, are excluded. These effects can be important in controlled 
fusion devices, such as Reversed Field Pinches and High Beta Tokamaks, which expect 
to operate with nonvanishing values of /3 = p/B2. 

In this paper we describe a two-dimensional, nonlinear, resistive MHD model 
which retains all the normal modes of the system. It is general in that the equations 
are cast in orthogonal curvilinear coordinates, making calculations in a variety of 
coordinate systems possible. For certain cases, the model employs a transformation 
to helical coordinates which allows the solution of the three-dimensional equations 
under the assumption that helical symmetry is preserved. Certain phenomena, such as 
nonlinear coupling of modes of different helicity, are thus not observed. 

In Section 2 we present the mathematical model in which the relevant equations are 
expressed as a set of conservation laws. Computational techniques for the solution of 
these equations are discussed in Section 3. The question of boundary conditions, 
including the important case of singular boundaries, is addressed in Section 4. In 
Section 5 we present examples of the application of our code to resistive instabilities, 
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an important and difficult case when the diffusive and convective time scales are 
widely separated. Results are presented in three different coordinate systems. One of 
our applications involves a mode which depends critically on finite plasma pressure, 
while the other cases can occur at zero /3. These results demonstrate the versatility of 
the model presented. 

2. MATHEMATICAL MODEL 

2.1. Basic Equations 

The equations appropriate for the description of low-frequency, long-wavelength 
phenomena in a fluid of finite electrical conductivity are the resistive magnetohydro- 
dynamic (MHD) equations. These equations relate the electromagnetic fields E and B 
to the fluid velocity V and the thermodynamic variables (the pressure p, the mass 
density p, and the specific internal energy e), and may be combined into a set of 
conservation laws for the magnetic flux density B, the fluid momentum density pV, 
the mass density p, and the total energy density u = p F/2 + B2/87r + pe. In terms of 
the nondimensional variables 

x/a ---f x, OH - t, BIB, - B, 

VIVA + v, PIP0 - P, P/PO -fPY 

u/u0 - % +I 0 + 77 

these equations take the form 

C(PV) - 2 
%t 

-V . [pVV - BB + ; (p + P)I], 

%P 
T%= --v . (PV), 

(2.la) 

(2.1 b) 

(2.lc) 

au 
t= -V . 1 (u + p)V + (B21 - 2BB) - V 

i+g(B-VB-VB.B)], (2.ld) 

where 17 is the electrical resistivity of the fluid, I is the unit dyad, and we have assumed 
Ohm’s law in the form nJ/S = E + V x B. The pressure is eliminated by assuming 
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the perfect gas law is valid, so that pe = p/(y - l), where y = C,/C, is the ratio of 
specific heats for the fluid. We can complete the formal transition to conservation 
form by rewriting (2.la) as 

~=v.[Bv-VB++(VB-VB~)], (2.le) 

where VB+ denote the transpose of the tensor VB. This form will be useful in Section 
2.2. 

In the normalization described above, subscripts ( ),, refer to characteristic values 
of various quantities, a is a characteristic length for changes in the magnetic field, 
VA = B,/(4~p~)~~~ is the AlfvCn velocity, and t H = a/VA is the hydromagnetic (or 
Alfvtn) transit time, i.e., the time it would take an Alfven wave to propagate a 
distance a. The normalization of the thermodynamic quantities is chosen such that 
u,, = p0 = B,2/8n = pVA2/2. The quantity S = tR/tH = 4raVA/c2q, is the magnetic 
Reynolds number, and measures the ratio of the two characteristic time scales ap- 
pearing in (2.1): the resistive diffusion time tR = ~~Tu~/c~Q, , which arises from the 
term V x (7V x B); and the AlfvCn transit time tH, defined above, whose origin is 
the term V x (V x B). 

Equations (2.1), along with the equation of state, represent a set of eight nonlinear 
equations in the eight unknowns B, pV, p, and U, and constitute the basis of our 
model. 

2.2. Transformation to Orthogonal Curvilinear Coordinates 

The set of equations (2.1), as written, is valid in any coordinate system. Com- 
putationally, we must specify a coordinate system and then expand the indicated 
vector operations to obtain a set of differential equations to which finite-difference 
techniques may be applied. In this work we choose to keep these equations as general 
as possible by specifying the metric as 

ds2 = h12dx12 + h,2dx22 + hs2dxa2, (2.2) 

where x1, x2, and xg are orthogonal curvilinear coordinates with scale factors 
hi = hi(xl , x2). 

We now proceed to expand (2.1) in component form. The result is 

aBi 1 a -= 
at - _ (h,h,h,oi”), h,h,h, axk 

a@ Vi) 
at = --1-!- (h,h,h,+“) + T”~ Iti;/, 

h,h,h, axle 

(2.3a) 

(2.3b) 
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aP - --1-c (h,h,h,pV”), 
at- h,h,h, axk 

au 
at- - f& 2% (hhh,fk), 

where uik are the contravariant components of the antisymmetric tensor 

S = BV - VB + (Q)(VB - VB+), 

rik are the contravariant components of the symmetric tensor 

T=pVV-BB+$(P+B2)I, 

pVk are the contravariant components of the momentum, f k are the contravariant 
components of the energy flux 

F = (u + p) V + (PI - 2BB) . V + (2r]/S)(B . VB - VB . B), 

and we have invoked the summation convention. The Christoffel symbols appearing 
in (2.3b) arise because of the dependence of the unit vectors on the coordinates, and 
are defined (with no summation convention) as [30] 

I l-- 
j _ hi ahi i 
ii (h# a.+ ’ I I .ik 

=o for i, j, k all different. 

Even when dependence on xS is ignored Eqs. (2.3) are quite complicated, and are 
tabuled in Appendix A. 

Equations (2.3) are the eight equations we solve numerically. The scale factors h, 
and their derivatives are specified by function subroutines making any change of 
coordinate systems a relatively simple matter. In some work we have used an extended 
set of equations which allow us to solve the full three-dimensional resistive MHD 
equations under the assumption that certain symmetries are preserved. This is des- 
cribed in the following section. 

2.3. Transformation to Helical Coordinates 

In general, the unstable eigenmodes of a cylindrical plasma are functions of the 
three spatial dimensions (r, 13, z), and may be written in the form 

f (r, 0, 2) = j,Jr) ei(me+‘zz) (2.4) 

where m and k, are the azimuthal and axial mode numbers, and fk,,, is the amplitude 
of the mode (k, , m). To describe these cylindrical perturbations in our nonlinear 
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code, we must reduce the dimensionality of the problem from three to two. This can 
be done by applying the coordinate transformation 

4 = m9 + k,z (2.5) 

to the fully three-dimensional equations. Lines of constant 4 on a surface of constant 
radius describe a helix which has the same pitch as the wavefronts of the perturbation 
(2.4). Such a transformation is clearly an approximation since it does not allow for the 
nonlinear generation of modes with different helicity; i.e., the original helical sym- 
metry is preserved. 

The transformation (2.5) has the effect of adding terms to the flux in the x2 coor- 
dinate direction. For example, a typical conservation law is now written 

where F* = mFO + rk,F, is the helical flux off, i.e., the flux through a helical ribbon 
with pitch equal to the pitch of the wavefronts of the perturbation. The term propor- 
tional to the axial flux F, does not appear in the formulation (2.3). The equations in 
this coordinate system have been detailed elsewhere [31, 321. 

3. COMPUTATIONAL TECHNIQUES 

3.1. Conservative Finite-Difference Methods 

Our basic equations form a set of Eulerian conservation laws in the quantities Bl , 
B, , B, , pV, , pV, , pV, , p, and U. The scalar conservation laws (2.3~) and (2.3d) 
conserve total mass and total energy, and the pseudovector conservation law (2.3a) 
conserves magnetic flux. The vector conservation laws (2.3b) conserve the components 
of momentum only in coordinate systems in which the scale factors are constants, i.e., 
Cartesian coordinates. This is because an inertial force (e.g., centrifugal force) is felt 
by a fluid element which is constrained to move along a path defined by a coordinate 
which is not a straight line, and we cannot expect to conserve all components of 
momentum (as referred to the curved coordinate system) in the presence of such a 
force. (The Cartesian components, however, are always conserved.) The terms 
responsible for this nonconservation of momentum are called Coriolis terms, and 
appear as the nonvanishing Christoffel symbols in (2.3b). 

When finite-difference approximations are made to the differential operators 
appearing in our equations it proves convenient to introduce them in such a way that 
the resulting difference equations have the same conservation properties as the original 
differential equations. Consider the prototype conservation law 
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where p is a scalar density and F and G are the x1 and x2 fluxes of p, respectively. 
Multiplication of (3.1) by the volume element CA- = h,h,h,dx,dx,dx, and integration 
over the allowed range of the independent variables yields the result that the rate of 
change of the quantity 

M= pdr 
s (3.2) 

depends only on the values of h,h,F and h,h,G on the boundaries. We would like our 
finite-difference approximation to have this same property. 

To this end, consider the finite-difference mesh as shown in Fig. 1 with I points in 
the x1 direction and J points in the x2 direction. The coordinates of a given mesh point 
lie at the center of a cell with vertices (x~~-,,~ , x2,-,,,h (x~,+~,, , x~~-~,~), (x~,+,,~ , x++~,~) 
and (x~~-,,~, x2,+,,,), where &:,I, = &(A +A*,). We then integrate (3.1) over the 
volume of the cell centered at the mesh point (i,.j). We have 

i-l i-X I it% it1 

FIG. 1. Computational cell with fluxes defined at cell faces. 
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We obtain a difference equation by appropriately approximating the integrals in 
this equation. We use the formulas 

s 
“iii/Z 

fdx = $J;(A+x + A-x) + U(Ax3), 
“C-l/? 

(3.4a) 

c1:;: s dx ‘j+“’ dyf(x, y) = &(d+x + A-x)(O;y + d-y) 
lJj--l/Z 

+ O@x3) + WY3), (3.4b) 

where A+ and A- are the forward and backward difference operators at point i, i.e., 
d+x = X~+~ - Xi , d-x = xi - xiPl . The volume of the cell is 

A7ij = ~(hlh,h,)ij (A +x1 + A-x,)@+x, + A-x,). 

Then using (3.4) in (3.3), we obtain the spatially discretized equation 

aPij _ _ 
at @i& [ 

(h2h3Fh+l,2,j - (h,h3f’h-1/2,~ + @&3Gh+,/2 - (W73Gh.3~-112 

A+-% + A-x, A+x, -I- A-x, I * 

(3.5) 

The temporal discretization will be discussed in a later section. 
We now define the finite-difference analog of Eq. (3.2) as 

I-l J-1 

M = C C pii Arij 
(=2 j&J 

I-l J-l 

= 4 i’ zz pij(h,h,h&&l+x, + A-xl)(A+xz + ‘-x2). 

Then using (3.5), we find 

aM 
J-* _=- 

at c’ A+x2 + A-x2) [(h h F),-,,2,j - (h h F)3,2 j] 2 2 3 23 , 
j=2 

where all the terms in the sums appearing at interior cell boundaries have canceled 
exactly. Thus, if we choose the points i = 3, i = I - 4, j = $, j = J - 3 to correspond 
to solid or periodic boundaries (at x1 = xlmrul and xlrnin, x, = x~, and x~,~), then 
the quantity A4 is identically conserved on the difference mesh. For the case of non- 
periodic boundaries, this would correspond to placing the wall midway between the 
two end mesh points. There are circumstances where this is neither possible nor 
desirable, in which case separate difference methods must be used to advance the 
boundary points. Such methods will be discussed in Section 4. 
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The differential equation for the Ith component of vector a conservation law appears 
as 

ad 1 -= -~ 
at [ -?- (h,h,P) + & (h,h,T2J)] + P, 

W& ax, 2 
(3.6) 

where Sz represents the effective source of uz due to the Coriolis terms. Again, using 
(3.4a) and (3.4b) we find the finite-difference approximation of (3.6) to be 

au:, @&‘-9+m~ - WG’Y-l/w 
at -- (h,hkA~ [ A+x, + A-x, 

+ (khJ2%i+m. - (h,hJ2$.i-1,2 
d+x, + d-x, I + s:,j (3.7) 

To obtain a conservative difference approximation to a pseudovector conservation 
law 

(3.8) 

(e.g., (2. la)), we must base our conservation sums on Stokes’ theorem rather than the 
divergence theorem. Consider, for example, a small surface element lying in the x1 = 
constant plane (see Fig. 2). The center of this element has coordinates (x1 , x2 , x3, 
and it has sides of length dx, and dx, . The curve C forms the boundary of the element. 
Then integrating (3.8) over this surface element, applying Stokes’ theorem, and using 
(3.4) results in the difference formula 

- & KM&+m - Vv%h--1/A (3.9) 

where the center of the surface element has indices (i, j, k) and we have suppressed 
nonvarying indices. The quantity to be conserved is now the flux through a surface of 
constant x1 (xZmin < x2 < x2,, , xgmin < xg < x3,=) consisting of many small 
elements such as the one just considered. We write this flux as 

The time derivative of this quantity is 

(3.10) 

(3.11) 
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FIG. 2. Computational cell in the x,-plane used for the derivation of the finite-difference ap 
proximation to pseudovector conservation laws. 

Then using (3.14), we have 

so that the rate of change of the total ffux @ is determined by the circulation of G 
about the boundaries of the domain. Note that if we have a system that is periodic in 
x2 so that (Iz,G,),-.~,, = (h3G& , and is independent of X, , then @ is conserved 
identically on the difference mesh. Such is the case, for example, in cylindrical coor- 
dinates (x1 = r, xz = 8, x, = z) when there is no axial dependence. Then radial flux 
is conserved. 

3.2. Spatial D.@erenting 

The system of conservation laws (2.3) can be formally written as 

au -= 
at -V.F, (3.13) 

where U is the eight-component vector 

u = Fl, 4 9 &, pK,pV,,pV,, p, u] (3.14) 

581/35/r-9 
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and V * F represents the right-hand side of (2.1). In orthogonal curvilinear coordinates, 
and ignoring Coriolis terms, (3.13) becomes 

au 1 _=_- 
at [ a OGA) + & W,)] 7 

M2h3 ax1 
(3.15) 

where the Fi are eight-component vectors representing the fluxes of the components 
of U. These have the general form 

(3.16) 

where Ai , Bi , and Ci are 8 x 8 matrices which serve to couple the various com- 
ponents of (3.15). We see that there are first derivatives, second derivatives, and mixed 
derivatives appearing in these equations. We shall now describe the treatment of 
first and second derivatives. The treatment of mixed derivatives is more closely tied 
to the temporal differencing and will be discussed in the next section. 

One result of the treatment of the conservation laws as given in Section 3.1 was to 
arrive at formulas for the spatial differencing of first derivatives of the fluxes. For 
example, we have for a nonuniform mesh 

aF 
ax= 

2 Fj+1/2 - Fj-112 
A+x+A-x ’ 

(3.17) 

where we have used the identity 

$(A+X + A-X) = Xi+1/2 - xi-1/2. 

The truncation error is 

1 A+x2 - A-x2 1 F” 
eT= -AF” A+x+A-x 24 

A+x3 + A-x3 -- 
A+x + A-x 

(3.18) 

so that (3.17) is formally first-order accurate, becoming second order only on a 
uniform mesh. However, if the mesh spacing does not vary greatly from one mesh 
point to another, then the first term in (3.18) can be small, and effective second-order 
accuracy can by maintained. For example, in this work the mesh spacing is varied 
such that A+x/A_x = T, where I is a constant differing only slightly from unity. Then 
(3.18) becomes 

eT = -iF”(r- I)A-x-&F”’ s A-x2. 

Ifr= 1 +E,EM O(A-x), effective second-order accuracy is achieved. 
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First derivatives appearing in F are differenced in a straightforward manner. We 
write 

& (uf) = 2 khl/; ; $a-l/2 

= (a+1 - w-1 
A+x+A-x ’ 

(3.19) 

while second derivatives are differenced as 

2 2f 
ax a= - A+x + A-x ( 1 2 

2 
= A+x + A-x [ “+l” 

h+1 -h 
A+x 

- uj-li2 ’ i!j-‘1, (3.20) 

which is again consistent with the basic formula (3.17). 

3.3. Temporal D@iSerenting 

So far we have only dealt with spatial’discretization, i.e., the replacement of spatial 
differential operators with spatial finite-difference operations. The equations we have 
derived have been of the form 

g = (01 + D, + 4&J, (3.21) 

where D1 represents first and second finite-difference operations in the x1 direction, D, 
represents first and second finite-difference operations in the x2 direction, D,, 
represents the (as yet unspecified) finite-difference approximation to the mixed 
derivatives, and U is a state vector of length M. 

The size of the problem can be greatly reduced, and the desirable stability and 
accuracy properties maintained, by applying multistep temporal differencing methods. 
In this work, we use the Alternating Direction Implicit (ADI) [33, 341 scheme 

1 - + D1) Un+l/z = (1 + 9 D2) U”, (3.22a) 

i - + D2) Un+l = (1 + $4) U’W/2. (3.22b) 

The inclusion of mixed derivative terms in the equations presents special problems 
to which no satisfactory solution has been found. The difficulty lies in the fact that 
the operator D,, couples mesh points in both coordinate directions so that it does not 
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fit easily into the AD1 scheme. This coupling is seen by a straightforward extension 
of (3.17). We have, for example, 

a 
2%; i 1 

ailf' _ 
2 ax, d+x, + d-x, [k &,i.i,.l,2 - (a ~)i.j-l,,l~ (3.23) 

The terms (a LJJ/~xJ~~~,~ are the fluxes at the top and bottom of the cell. It is clear that 
when the derivatives on the right-hand side are replaced by finite differences, neigh- 
boring points in both coordinate directions will be coupled. Marx [35] has used a 
scheme which allows splitting of this operator and still retains second-order accuracy, 
but this method is not conservative, since now the fluxes at the top and bottom of the 
cell appear at different time levels, and we cannot achieve the exact cell-to-cell cancel- 
lation of fluxes required for conservation. 

Thus in choosing a scheme for the mixed derivative we must strike a compromise 
between second-order time accuracy and conservation (which is in itself a measure of 
accuracy). In this work we choose to retain conservation on the difference mesh by 
always treating the mixed derivatives explicitly (i.e., at the “old” time level). We use 

a af 
ax, a ax, ( 1 - = mi+l/2,l(fi+l,j+l + &+1 - A+l.i-1 - A-1) 

- %1/2&ij+1 + L.i+1 -A-1 -h-L-1)1 (3.24a) 

and 
. a af 

( ) - ax, a ax, = C[ai,i+l/2(h+l.i+l + fi+l,i - Ji-l.i+l + A-1.9) 

- ui.j-1/2(si+l.i + h+l,j-1 - L1.j - A-l.j-I)19 (3.24b) 

where C = (d+x, + d-x,)-l @l+x, + d-x,)-l. 
The Coriolis terms (see Eq. (3.6)) are time centered on each half time step, i.e., 

so that the overall time centering of these terms is achieved. 
The final set of difference equations can be written symbolically as 

[l - + (Q + S)] Un+rj2 = .[1 + $ (D, + D, + A’)] U”, (3.25a) 

[l --$(D,+s)]U"+'= [l + $ (4 + D,, + s>] Un+l", (3.25b) 

where the operator S represents the effect of the Coriolis terms, as described above. 
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3.4. Solution of the Difference Equations 

Since the operators D1 , Dz , D12 , and S are in general nonlinear, each step of the 
AD1 algorithm, Eqs. (3.25a) and (3.25b), represents a set of M x J (where M is the 
length of U and J is the number of mesh points in one direction) nonlinear algebraic 
equations to be solved on each row of the mesh. These equations must be linearized 
and solved iteratively. Lindemuth [19], and Finan [22], have used a multidimensional 
Newton-Raphson procedure to accomplish both linearizeation and solution. Here 
we use a more direct approach. 

We consider the momenta, not the velocities, to be the dependent variables. The 
velocities are considered to be auxiliary variables and are calculated as momentum 
divided by density. They are always treated as coefficients. For example, in the equa- 
tions for the time rate of change of the magnetic field, there appear terms V’iBj . These 
terms are always written as 

(&&)‘Z’ = y!z-l)@) I 3 3 

where the superscript (I) refers to the Ith iteration of the solution of the nonlinear 
equations. The pressure is also considered an auxiliary variable, and is calculated at 
each iteration as 

p'z' = (y - l)[u'z' - (pp')2/p'z' - #Z'2]. 

The pressure gradient terms are thus treated “explicitly” (i.e., considered as known 
quantities at the last iteration of the new time step). Terms which appear as products 
of unknowns are linearized as 

(fg)‘Z’ = &(f'z-lyz' + g'z-llf'z'), 

wherefcz-l) and gtz-l) are now considered as coefficients in the first and second terms, 
respectively. There are also terms which’ contain both products of unknowns and 
auxiliary variables. For example, one component of the Reynolds stress pVV is written 
as 

p v1 v2 = g[jp’(p V,) (1) + p)(p V2) (0 + yy @$ Q)]. 

Here y(z-1, v’~-l’ and v:dl) ,;8-1, 
(PY,~‘~), i,Vifz)t and p(l). 

are treated as coefficients of the unknowns 

When Eqs. (3.25) are linearized in this manner, there results a set of simultaneous 
linear algebraic equations to be solved on each row of the mesh. Since the operators 
on the left-hand side of these equations couple at most three nearest neighbor points, 
the resulting system is block tridiagonal, and may be written in the form 

-A!z~l) . U,‘yl,? + @:l’ . Ui’;; - Cjf;” . Ui(l)l,j = D,,j , 1.3 i == 2, 3 )...) z - 1, 
(3.26) 

subject to the boundary condition 

G, . Utz? = H, . U'? + J 193 2.3 1 (3.27) 
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at the left-hand boundary, and 

at the right-hand boundary. Here A, B, C, G, and H are M x M matrices, tJisi is the 
vector of length M of unknown quantities at the mesh point (i, j) (1 < i f I, 1, < 
j < .I), and D and J are vectors of length M. (Note that A, B, and C are not the same 
as those appearing in (3.16)). There is one equation for each interior mesh point on 
rowj. For the model presented in Section 2, M = 8. 

Equation (3.26), subject to (3.27) and (3.28), is solved by the well-known algorithm 
]361 

U!“) = E, . U!‘) + F. t., 9, 2+1,3 E 3 i = z - I ) I - 2 ,..., 1) 

where Ei and Fi are defined recursively in terms of the boundary conditions. A similar 
solution can be defined when periodic boundary conditions are imposed [37]. In that 
case 

where E, S, and F are also determined recursively. Details of this method are presented 
in Appendix B. 

Once the solution has been advanced to a new time level, the coefficients appearing 
in (3.26) are updated and the procedure is repeated until the solution converges to 
within a given tolerance. The time step is adjusted according to the number of itera- 
tions required for convergence [38]. If convergence cannot be achieved within a 
specified number of iterations, the time step is decreased. Conversely, if the solution 
converges rapidly, the time step is increased. Thus the code always uses the largest 
possible time step to maintain the desired accuracy. This iterative procedure is applied 
in a row by row manner. Since some rows converge faster than others, only limited 
regions of the mesh receive the maximum number of iterations; i.e., time is spent 
primarily in those regions where the solution is the most rapidly changing. It is thus 
impossible to give the exact number of iterations required for the entire mesh-one 
can only say that the most dynamic region of the system converges within the specified 
number of iterations (typically five). Using this method we generally run cases with 
time steps from 2 to more than 6 times larger than would be allowed by an explicit 
solution. The exact value depends on the desired accuracy. 

4. BOUNDARY CONDITIONS 

To advance a given magnetoplasma configuration forward in time, Eqs. (2.3) must be 
supplemented by boundary conditions. The case of periodic boundaries has been dis- 
cussed in Section 3.4 and is detailed in Appendix B. In this section we discuss the 
conditions imposed at a conducting wall and at a singular (r = 0) boundary. 
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4.1. Conducting Wall 

In inviscid flow, the primary boundary condition at a nonporous wall is 

ii*v=o, (4.1) 

where ii is a unit vector normal to the wall and V is the velocity vector. 
The boundary conditions on the electromagnetic field at a perfectly conducting 

wall are 
ii.B=O, (4.2) 

AxE=O; (4.3) 

i.e., the normal component of the magnetic field and the tangential component of the 
electric field must vanish. The first of these gives a condition on the normal component 
of B, while the second can be used to derive conditions for the tangential components 
of B. From Ohm’s law and Ampere’s law we have 

(q/S) V x B = E + V x B. 

Taking ii x this equation gives 

(v/s>& x (v x B) = ii x E + (?I . B) V - (i-i . V) B, 

which, when evaluated at the wall, yields 

ii x (V x B) = 0. (4.4) 

Boundary conditions on the tangential components of velocity are found by 
requiring that, for inviscid flow, no vorticity be generated at the wall, i.e., 

ii x (V x V) = 0. (4.5) 

We have found it convenient to impose boundary conditions on the thermodynamic 
variables p and ZJ which require that mass and energy be conserved. We place the wall 
atj = J and consider a half-sized cell extending from j = J - 4 to j = J (see Fig. 3), 
and we consider only the flux in the x2 direction entering the cell. (We have here 
specified x2 to be the coordinate normal to the wall.) If we define the “mass” in the 
interior cells (in one dimension) to be 

where the sum extends over all cells up to j = J - 1, then the rate of change of this 
quantity is 

~MINT ~ = -(h,h,F,)~:~,, . at (4.7) 
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nducting 
II 

f cell 

FIG. 3. Computational half-cell at solid boundary. 

We now advance the boundary cell in such a way as to exactly cancel this change in 
mass on the interior of the mesh. We thus require 

With 

!!!?A at 7J = (hlh&);% . 

ATJ = $h,h,h, A-X,, 

(4.8) 

(4.9) 

as the volume of the boundary cell, we have 

+J -= 
at (h,h,h,jJ A& @,WJlt:l,, (4.10) 

as the equation of the evolution of the density at the wall. 
This procedure fits into our general boundary condition formulation. For example, 

the finite-difference approximation to the continuity equation (where Fz = pVJ is 

with 
-c(puz);” + p:+l = c(pt$:; + pJn (4.11) 

The coefficients appearing in (4.11) become elements in the boundary condition 
matrices G and H (see Eqs. (3.27) and (3.28)). 

4.2. Singular Boundaries 

The problem of numerically advancing the solution at the origin of coordinates 
(r = 0) is a difficult one, for unless symmetry conditions exist there is no natural 
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boundary condition to be imposed at this point. This is because it is a boundary of 
the computational domain only by construction of the coordinate system. In this 
section we will present some special methods we have applied to this problem. 

42.1. Axial Symmetry (m = 0) 

For instabilities characterized by azimuthal mode number m = 0, we can pose the 
problem in (r, z) cylindrical coordinates. In this case, the solution at points on the 
axis r = 0 can be different for different values of z. This is in contrast to the case of 
polar or helical coordinates, where points on the axis for different values of the angular 
variable represent the same physical point in space. 

From symmetry, we immediately have the boundary conditions 

and 

B, = B. = V, = V, = 0 (4.12) 

w -aP.au ah _~--_- 
ar ar ar ar (4.13) 

at r = 0. Equations (4.12) are easily implemented. However, if the boundary points 
of the mesh are to be placed on the axis (as they must be, since the coordinate system 
is not defined for negative r), Eqs. (4.13) become first-order accurate. To avoid this 
we apply a modification of the conservative boundary conditions described in Section 
4.1 for these variables. 

To illustrate this method, let us integrate the scalar conservation law 

au 
at= - tg(rF) (4.14) 

over a cell which extends from r = 0 to r = r 3,2 = r,/2, where r2 is the radius of the 
first interior mesh point. We find 

a 
s 

rap 1 
at” urdr=--rF 2 2 2, 

Then approximating the integral as 

s 

e/z 1 
urdr = --ur2 

0 
2 1312 

we arrive at 

au, 4F -=-- 
at r2 2 (4.15) 

as the equation for advancing u at the origin. 
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In this work we also include the axial fluxes in a straightforward manner. When this 
is done, we arrive at the following equations for advanding B, , pV, , p, and u at the 
point Y = r1 = 0, z = zi : 

8(pvz)is = - $ (pV,,V, ~ B,B,)i,2 
at 

1 
[ 

ifl.1 

Am,z + A-z prz2 
- Bz2 $- ; (P + B,‘) 

II 
, 

i-l.1 

(4. I6a) 

(4.16b) 

au -_ 
at - ; /Ku + p - B,” + Be2 + B,2) “, - 2&(&V, + BzVA1i.z 

2r7 rB 3B, -_ 
S [ i 

aB, _-_ 
’ 8r az ) 

(A+z ; Apzl (u + P - B,2) Vz /‘+“’ . 
i-l.1 

(4.16d) 

In deriving these equations, we have made use of the boundary conditions (4.12). 

4.2.2. Scalar Quantities (m” > 0) 

In this and the following section we consider boundary conditions at the origin 
when there is no axial symmetry. In that case one of the independent variables is an 
angle (0, say), and the origin represents the same point in space for all values of this 
coordinate. 

Scalar quantities, such as p and U, must have unique values at the origin for any 
direction of approach; i.e., as we near the origin on any ray 13 = constant, these 
quantities must approach the same limiting value. In polar and helical coordinates 
this is also the case for B, and pV, . This comes about because the orientation of the 
unit vector in the z direction is independent of position. We advance such quantities 
at the origin by means of an algorithm which assures a solution which is consistent 
with that obtained on the interior of the mesh [39]. 

In helical coordinates (for example), a typical scalar conservation law is written 

(4.17) 

where C$ is defined in Eq. (2.5). Integration over a small cylindrical cell of radius 
Ar/2 yields 

(4.18) 
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where au is the value of u at r = 0, and the last term in (4.17) has vanished due to the 
assumed periodicity of G. On a finite-difference mesh, (4.18) becomes 

As discussed in Section 3.4, the solution of the difference equations proceeds in 
partial time steps, so that on the partial step in which radial terms are treated explicitly, 
Eq. (4.19) can be used directly. On the other partial step F must be treated implicitly, 
thus coupling the solution for all rays (lines for which+ = constant) at the origin and 
seemingly destroying the well-known advantages of the AD1 method. However, we 
will now show that this coupling can be used advantageously to obtain a self-consis- 
tent solution at the origin. 

The radial flux F appearing in (4.19) will in general be nonlinear and will contain 
derivatives of U. After linearization and discretization, we can write 

which, when substituted into (4.19), expresses u:+’ in terms of u:,:’ for all values of i, 
and displays the coupling of the rays discussed above. This coupling can be removed 
by modifying the recursive solution on the interior of the mesh. Instead of defining 
the solution as in (3.29), we write 

u;;’ = ei,juT,;Al +fi,, , j = 2, 3,..., J; 

i.e., we define the solution from “left to right,” instead of “right to left.” Then using 
(4.20) and (4.21) in (4.19) yields 

as the expression for the scalar u at the origin. The complete solution is thus obtained 
by sweeping all rays from the outer boundary to the origin to determine ei,j and f& 
recursively forj = J - 1, J - 2,..., 2, applying (4.22), and then using (4.21) to obtain 
the interior solution. 

4.2.3. Symmetry Conditions (I m 1 > 1) 

At the origin, we know that the x and y (Cartesian) components of any vector 
quantity must be uniquely defined, whereas the r and 8 components are not necessarily 
unique (i.e., they can have different values on each ray approaching the origin). Let 
V rI,,, VO, ) be the r and 6’ components of a vector V at the origin for each value of 
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0, (VT1 j = Vrl(e,), Vs, j = V,I(OJ). We define the unique Cartesian components at 
the ori’gin by the averaging procedure 

vzl = & 
s 

277 
[V,,(e) cos 0 - V,Je) sin e] de, (4.23a) 

0 

[q(e) sin e + vo,(e) cos e] de. (4.23b) 

But without loss of generality one of the components will vary like sin me, while the 
other will vary like cos me, so that 

(4.24a) 

(4.24b) 

Both of these vanish identically for / m 1 > I. Then from 

VT,,j = Vrl cos ei + Vu1 sin ej , (4.25a) 

Vo, j = - VT1 sin Bj + TV/, cos ei , (4.25b) 

we see that for these modes we have the symmetry condition that all vector com- 
ponents must vanish at the origin for each ray ej = constant. 

4.2.4. Vector Components (m = 1) 

When m = 1, the integrals in Eqs. (4.24) no longer vanish, so this mode is charac- 
terized by gross motion (e.g., nonvanishing velocity) across the origin. From (4.25), 
we see that the polar components of a vector need not be unique there. However, the 
Cartesian components must alwaus be unique, and we use this property to advance 
the vector components at r = 0. 

The general form for the equation describing the evolution of a vector quantity is 

(4.26) 

where F, G, and H are the vector fluxes of V, and C represents possible Coriolis terms. 
We assume that the Cartesian representation of V can be obtained by the transforma- 
tion 

V, = a . V. 

Then the Cartesian components of V evolve according to the equation 

(4.27) 

aV -=-~~(ra.F)-~~(a.G)-~(OI.H)+~.H+ 
at 

a . Tf; 
(4.28) 



MAGNETOHYDRODYNAMIC CALCULATIONS 131 

where we have assumed a to be independent of r, and we have used 

which, indeed, serves as a definition of the Coriolis term C. 
When transformation to helical coordinates is performed, Eq. (4.28) becomes 

aV 2 = - i g (ra - F) - k -$ [a . (G + rk,H)] + k, $- * H -+ a . Vf, 
2t 

(4.29) 

which points out the reason for allowing a to depend explicitly on the z coordinate. 
Proceeding in a manner similar to that described in Section 4.2.2, we arrive at the 

equation 

av,, 2 -=-- 
at I [ and8 . 

TAr ,, 
a F-kzAr aa --4--X.H+$a*Vj] (4.30) 

r=Arl$ 

for the evolution of the Cartesian components of V at the origin. In polar coordinates, 
the intergrand may be written as a . W, where 

Here we have used the fact that 

aa -= 
ae a * A, 

where 

A = (; -;). 

A self-consistent solution can now be defined in a manner analogous to that 
previously described for scalar variables. When we use the linearization 

w;,;;, = Pi . V;F + Qi . VFO+’ + Ri (4.3 1) 

we arrive at 
V ;;’ = (I + S)-’ * (V,“, - T), (4.32) 

where I is the identity matrix, and 

S = -$-c AO,ai . [Pi * Ei,2 . ai1 + Qi], 
2 

T = $z dOpi * [pi . Fi,2 + RJ. 
I 

The polar components are-then obtained by inverting the transformation for each ray, 
and the interior solution is then found as described in Section 4.2.2. 
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5. APPLICATIONS 

One of the features of the resistive MHD equations is the occurrence of phenomona 
which may evolve on widely separated time scales (see Section 2.1). Requirements of 
accuracy and stability on the numerical solutions of these equations require that such 
simulations evolve on the fast time scale. In that case, computational studies of 
events which evolve on the slow time scale become difficult whenever S ,- O(1). 
Such is the case with resistive instabilities [23], which have no counterpart in ideal 
(infinitely conducting) MHD, and which grow on time scales which can approach the 
resistive diffusion time. 

Recently certain of these resistive modes have been successfully studied [24-281 by 
employing a reduced set of equations [29] which, by assuming an ordering that 
eliminates the effects of plasma pressure, removes the fastest time scales from the 
problem and allows the numerical solution to proceed at a rapid rate. However, if one 
wishes to obtain solutions which may be applicable to such controlled fusion devices 
as High Beta Tokamaks and Reversed Field Pinches, the effects of plasma pressure 
must be included. Indeed, there exist resistive modes which appear only in the presence 
of finite pressure gradients [40]. Thus the numerical computation of resistive instabili- 
ties represents an important and extreme test of our model. 

In addition, it is often desirable to perform calculations in several geometrical 
configurations. In many cases, one can best touch base with theory in slab geometry, 
while more realistic calculations require the use of other coordinate systems. Thus 
the ability to readily perform calculations in a variety of coordinate systems is extreme- 
ly useful. 

In this section we present sample calculations of resistive instabilities which demon- 
strate the performance of our model in light of the above discussion. For these 
examples we have taken S = 102p3, so that the time scales are well separated. We 
perform calculations in three different coordinate systems: Cartesian (x, y), axi- 
symmetric cylindrical (r, z), and polar cylindrical (r, 0), and we present one example 
of the nonlinear evolution of a mode which appears only when the plasma possesses 
a finite pressure gradient. 

5.1. Slab Geometry 

We use Cartesian coordinates to study the tearing mode in a sheet pinch. The 
purpose of this study is twofold: (1) to serve as a check on the code by comparison 
with analytic results [23]; and (2) to display the nonlinear behavior of the mode. 

We choose our equilibrium magnetic field configuration to be 

B, = tanh(n/2) y, 

which reverses direction at y = 0. We place conducting walls at frv and assume a 
periodic structure in the x-direction. The scale length a in the y-direction is the half- 
width of the current sheet, while that in the x-direction is taken as the wavelength of 
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the perturbation. The resulting scale factors are h, = 277/a, h, := h, = 1, where 
CY = ka is a nondimensional wavelength. 

The perturbation quantities are the unstable eigenmodes obtained from a linear 
resistive MHD code [41]. These perturbation quantities, along with the equilibrium 
described above, constitute the initial conditions for the problem. 

The growth rate of the resistive instability is determined by 

where A+ = timax - &rn and 

4(x) = Jo 
-% 

B,(O, y’) dy’ - IO= l&(x’, 0) dx’ 

is the reconnected flux at the singular surface (JI = 0). 
When eigenfunctions of the linearized equations were introduced into the nonlinear 

code, the growth rate was found to be constant to four significant figures for 50 time 
steps. This value, as a function of S, was then compared with results obtained from 
the linear code (RIPPLE3) and those predicted by the linear analysis of [23], and are 
presented in Fig. 4. (The results obtained from the nonlinear code are labeled MHDG.) 
In studying these results it should be recalled that, in the present work, time 
is measured in units of the Alfvtn transit time, while in [23] time is measured in units 
of the resistive diffusion time. Thus the usual formula p = S2/5 must be converted to 
p M S-3/5. This normalization more clearly displays the decrease in growth rate with 
decreasing resistivity (increasing S). 

1 $zgFG$-y:;J 
lo2 lo3 lo4 lo5 

Magnetic reynolds number S = tR/tH 

FIG. 4. Growth rate vs magnetic Reynolds number for the sheet pinch. 

Two different models for resistivity were used: (1) an analytic model, 7) = cash 
!7(7r/2) y); and (2) Spitzer resistivity. The latter model is 7 = T-3/2. Recalling that the 
temperature is peaked at y = 0, we see that for both models the resistivity is a mini- 
mum at the singular surface. 
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We find that the nonlinear code and the linear code agree quite well for low S 
(~104) and less well for higher S, for both resistivity models. For analytic resistivity 
we find a least-squares fit of the data over the range lo2 < S < lo5 yields 
p = 0.844S-“~4g4 for the linear code, and p = 1.28S- o.55g for the nonlinear code. For 
a lower range of S, lo2 < S < 104, we find that the linear code yieldsp = 0.792S-0.463 
while the present model gives p = 0.7353- . O 473, demonstrating the close agreement 
between the two codes. These are to be compared with p = 1.0S-“.6, the analytic 
result for this value of CL For Spitzer resistivity, a full range fit of the linear results 
has p = 0.75S-“.M2, while the low S fit is p = 0.5958- o.504. The corresponding results 
from the nonlinear code are p = 1.23% o.632 for full the range of S, and p = 
0.734S-“.54s for low S. Thus, while the linear code, the nonlinear code, and theory 
agree quite well for low S, the present results actually agree better with theory over a 
larger range of magnetic Reynolds number. 

Next the size of the perturbation and time step were increased and the mode was 
allowed to run into the nonlinear regime. The reconnected flux, fhj, , as a function of 
time, for the case S = 102, is shown in Fig. 5. This mode was found to grow exponen- 
tially for some time and then begin to saturate. Figure 6 shows the magnetic flux 
surfaces after 10 Alfven transit times. This places it well into the nonlinear regime. 

2x1o-2 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 
0 3 6 9 12 15 18 21 24 

T = (t-tO)/$ 

FIG. 5. Reconnected flux versus time for the sheet pinch. 

The magnetic island is evident. It is seen that the nonlinear behavior of this mode does 
not cause drastic changes to the magnetic field structure away from the singular 
surface; i.e., the mode remains localized. However, since particles can easily stream 
along field lines, the change in topology has created a “short circuit” for particles to 
move from one side of the singular surface to the other, allowing for the possibility 
of an enhanced diffusion rate. 

We have also used our model to study the nonlinear evolution of the doublet 
tearing mode in this geometry [42]. 
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FIG. 6. Magnetic flux surfaces for the sheet pinch. 

5.2. Axial Symmetry (m = 0) 

Modes of a cylindrical plasma for which the azimuthal mode number m vanishes 
are axisymmetric because the perturbation no longer depends upon the angular 
variable 0. In this case the problem can be posed in (r, z) coordinates. In this section 
we present an example of a calculation performed in this coordinate system. For 
computational purposes, we take x1 = z, x 2 = r, xB = 0. The corresponding scale 
factors (see Section 2.2) are h, = 2rr/ct, h, = 1, h, = x2 , where 01 = k,a is the non- 
dimensional axial wave number. In addition to demonstrating the utility of posing the 
equations in orthogonal curvilinear coordinates, this case also serves as a test of the 
boundary conditions discussed in Section 42.2. 

We consider an equilibrium in which the axial magnetic field B, changes sign in the 
outer regions of the pinch. Such fields are characteristic of controlled fusion devices 
known as Reversed Field Pinches. Recently, analytic equilibria of this type have been 
discovered which are not only stable against tearing modes (resistive instabilities 
driven by the gross configuration of the magnetic field away from the singular Q . B = 
0) surface) at zero plasma p(=p/B”), but which are also stable against ideal inter- 
change modes for values of p approaching 18 o/0 [43]. However, these equilibria have 
been found to be unstable to slow resistive interchange modes [40], which are driven 
by the local pressure gradient at the singular surface. We perturb these equilibria 
with eigenfunctions obtained from a linear code [44], and follow the evolution of the 
mode into the nonlinear regime. 

In Fig. 7 we show the initial flux surfaces for the case S = 10s. The magnetic island 
due to the initial perturbation at the singular surface is present. In Fig. 8 we show the 
flux surfaces at t = 595.5t,, well into the nonlinear phase. Note the extreme distor- 
tion of the flux surfaces between the two large magnetic islands. The corresponding 
velocity field is shown in Fig. 9, and we note the localized interchange vortices in the 
region of largest flux surface distortion. The large radial extent of this flow pattern 
makes this mode particulary dangerous to plasma confinement. 
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FIG. 7. Magnetic flux surfaces for resistive interchange mode, m = 0, t = 0. 

4 

3 

L 

2 

0 0.5 1 

L 

FIG. 8. Magnetic flux surfaces for resistive interchange mode, m = 0, I = 595.5tH 

Note that this mode appears only when the plasma possesses a finite equilibrium 
pressure gradient (i.e., nonzero /3). Such modes can only be studied by applying 
models which include these terms. 

5.3. Helical Symmetry (m > 0) 

As discussed in Section 2.3, modes for which both m and k, are nonvanishing 
possess helical symmetry. The natural coordinate system for these calculations 
consists of a radial (r) and an angular (+) variable. For such cases we take x1 = C#J, 
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FIG. 9. Velocity field corresponding to Fig. 8. 

x2 = r, x, = z , h, = x2, h, = 1, h, = I/U and include the additional terms discussed 
in Section 2.3. These cases also require the use of the boundary conditions described 
in Sections 4.2.2-4.4. Thus, even though the physical geometry is still cylindrical. the 
computational geometry is entirely different from that described in Section 5.2, and 
again serves as a demonstration of the versatility of our model. 

In these examples we consider the equilibrium given by 

B, = 0, 

B, = 4(r), 

B, = J,,(r), 

where J,, and J1 are the zero- and first-order Bessel functions. This equilibrium has 
the property of being force-free; i.e., the Lorentz force J x B vanishes identically. 
Thus no equilibrium pressure gradient exists, and we expect tearing modes to con- 
stitute the primary resistive instabilities. Also note that, for r > 2.4, the axial field 
reverses, so that this equilibrium can serve as a model of a Reversed Field Pinch. 

For the case m = 2, we must use the boundary conditions discussed in Sections 
4.2.2. and 4.2.3. In Fig. 10 we show the evolution of the flux surfaces for this mode 
for the case S = 102. We note that, after a short period of growth, saturation occurs 
at a level which leaves the overall plasma undisturbed. This mode remains localized in 
the same manner as discussed in Section 5.1. This behavior is summarized in Fig. 11, 
where we plot the exponential growth rate as a function of time. In this case, this 
quantity is determined by 



FIG. 10. Magnetic flux surfaces for the m = 2 mode in the Bessel function model. 

tit, 

FIG. 11. Growth rate vs time for m =~ 2, Bessel function model. 
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where 

is the helical flux, rs is the radius of the singular surface, and 0~)~ = #s max - tig ,,,rn 
is the reconnected helical flux. Note the initial exponential growth followed by rapid 
nonlinear saturation. 

The case m = 1 is characterized by gross motion across the origin, so we must use 
the boundary conditions discussed in Section 4.2.4. In Fig. 12 we plot the reconnected 

0 20 40 60 80 loo 

t/t, 

FIG. 12. Reconnected flux vs time for m = I, Bessel function model. 

helical flux as a function of time for this mode, again with S = 102. Note the extended 
period of exponential growth followed by complete nonlinear saturation. The evolu- 
tion of the flux surfaces is shown in Fig. 13. For this mode we see that the magnetic 
island can grow to large size and, in the nonlinear phase, can occupy a considerable 
portion of the plasma volume. A more complete discussion of this behavior, which is 
qualitatively similar to that found for tokamak plasmas [29], can be found in Ref. 
[32]. Here we simply note that we have successfully simulated transport of both 
scalar and vector quantities across the origin by applying the methods described in 
Sections 4.2.2 and 4.2.4. 
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FIG. 13. Magnetic flux surfaces for the m = 1 mode in the Bessel function model. 

6. SUMMARY 

We have presented a computational model for the study of resistive magnetohydro- 
dynamics. This model does not depend on assumptions about the ordering of various 
terms, and therefore contains all the macroscopic modes of a magnetoplasma system. 
It is unique in that it is applicable to a variety of coordinate systems. 

We have developed numerical techniques for the solution of these equations. These 
techniques are based on an implicit treatment of the resulting difference equations, 
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and allow us to advance the solution at a rate several times faster than the fastest time 
scale in the problem. We have derived special boundary conditions for advancing the 
solution at a singular boundary, which must be accomplished if realistic simulations 
are to be performed. 

We have presented examples of the application of our model to three distinct 
computational coordinate systems: Cartesian, axisymmetric, and polar. This effectively 
demonstrates the versatility of our approach. These examples involve the nonlinear 
evolution of resistive instabilities for cases in which the diffusive (slow) and convective 
(fast) time scales are well separated, and constitute an extreme test of our computa- 
tional methods. The quantitative agreement with theoretical [23] results, and the 
qualitative agreement with previous numerical results [24], demonstrate the success 
of these techniques. In addition, we have presented results which depend critically on 
finite plasma pressure and cannot be obtained by the application of a reduced set of 
equations. 

APPENDIX A. TWO-DIMENSIONAL MHD EQUATIONS IN ORTHOGONAL 
CURVILINEAR COORDINATES 

In this Appendix we tabulate the two-dimensional resistive MHD equations which 
we solve in our code. They are obtained by expanding Eqs. (2.3). The result is 

(Al) 

642) 

(A4) 
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a@ V2) 1 a -=-- at I - [h,h,(f V,V, - B&J1 + & [hMfV22 - &?)I 
h,h,h, 3x1 

-t h, 2 (f V, V, - BIB,) - h, 2 (f I’,’ - B12) 
1 2 

- h, $ (fV,z - 8331 - ; t & (P + B’), 645) 
2 

a(f VA 1 -=-- 
at I -!- [h,h,(fVlV, - BAI + -& [h,h,(fV,Vs - &%I 

hh,h, 8x1 2 

+ h, 2 (f V, V, - BIBJ + h, 2 (f V,V, - BzBdl , 646) 

af 1 
at== 

--- 
I -?- (h&f VI) + -& (h&f Vd/, 

W,h, 3x1 
and 

au i a 
at= - - - h,ha 

M,h, 8x1 I [ (u + P> V, 

- (B12 - B22 - Bs2) VI - 2Bl(B2V2 + B,B,) 

2T .-!i .-t (h3B3) + -~ 
I S h,h, ax, 

(u +P) J'2 

+ (B12 - B22 + Bs2) v, - 2B,(B,V1 + B,Vd 

(h,B,) - 2 (h,&)] - B3 a (h,Bs)/] 1. 
h&s ax, (A*) 

APPENDIX B. SOLUTION OF THE DIFFERENCE EQUATIONS WITH PERIODIC 
BOUNDARY CONDITIONS 

In this Appendix we detail the solution of the difference equations 

-AJJi+l + BJJi - CiUi-I = Di (Bl) 

for i = 2, 3,..., Z - 1, subject to the periodic boundary conditions [37] 

Ul = VI-1 , u2 = u, . Wa, b) 

These conditions are equivalent to requiring that U and its first derivative have the 
same value at i = 312 and i = Z - l/2. 
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Using these boundary conditions, we can write system (Bl) as 

B2 * U, - A, . U, - C, * U,-, = D, 

- C, . U, + B, * U, - A, * U, = Da 
- C, . U, + B, . U, - A4 . U, = Da 

- C,-, * U,-, + B,-, * U,-, - A,-, . UIpl = b,w2 

- AI-, * U, - C,-, . U,-, + BI-, . U,-, = D,-, 
(B3) 

which comprise Z - 2 equations in the Z - 2 unknowns U, , U, ,..., VI-, . Except for 
the terms - AI.-, . U, and - C, * VI-, , the system is block tridiagonal. 

We now note that we could solve the first equation for U, in terms of U, and 
U,-, . We could then use this value of U, to solve the second equation for U, in terms 
of U4 and U,..., , and could continue on through the system, solving the Ui in terms of 
Ui+l and VI-, . We will thus seek a solution of the form 

Ui = Ei * U,+l + Si . U,-, + Fi . (B4) 

When this is used to eliminate U+r from (Bl), we arrive at the recursion relations for 
E, S, and F. They are 

E< = (Bi - Ci * Ei-I)-’ * Ai 7 @ 54 
Si = (Bi - Ci . Ei-I)-’ * Ci * St-1 3 Wb) 
Fi = (Bi - Ci * Ei-l)-l * (Di + Cc * Fi-1). (B5c) 

From its construction, Eq. (B4) is equivalent to the ith equation of the set (B3). In 
particular, when applied to the (I - 2)nd equation of the set, we arrive at an expression 
for U,-, in terms of U,-, only. This value could be used to eliminate U,-, from the 
(I - 3)rd equation, giving a value for UIp3 in terms of U,-, only. This procedure could 
be continued through the rest of the equations. In general, for the i’th equation, we 
would obtain relationship of the form 

Ui = Ti . U,-, + Vi m 

Using this to eliminate Ui+r from (B4), we arrive at the recursion relations 

036) 

Ti = Si + Ei * T,+l p W’4 
Vi = Fi + Ei * Vi+1 s Wb) 

We have now expressed all our unknows in terms of UIm1 . To complete the solu- 
tion, we apply (Bl) at i = Z - 1, and use (B2b) and (B6). The result is 

U,-, = (B,, - A,-, * T, - G-1 * T&-l . @,+I 

+ AI-1 - V, + G-1 * VI-,). 038) 



144 SCHNACK AND KILLEEN 

We now need starting conditions for the recursion relations (B5) and (B7). At i : I 
we have, from (B4), 

U1 = El . U, + S, . U,-, + F1. 

This can be consistent with the boundary condition (B2a) only if 

E, = A FI = 9, s1 = I, 039) 

where 9 is the zero matrix or vector, and I is the unit matrix. Using these, Eqs. (B5) 
define E, S, and F for i = 2, 3 ,..., Z - 2. Evaluating (B6) at i = Z - 1, we conclude 

T,-, = I, VI-1 = #. @lo) 

These starting conditions, along with the Ei , Si and Fi , can now be used in Eqs. (B7) 
to define T and V, for i=Z- 2, I- 3,..., 3, 2. These values of T and V, along with(B8), 
can then be used in Eqs. (B6) to solve for the Ui for i = 2,3,..., Z - 1. The boundary 
conditions (B2) then define the remaining unknowns U, and UI . Periodic boundary 
conditions thus require three sweeps of the mesh, whereas the regular boundary con- 
ditions (3.27) and (3.28) require only two. 
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